Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 2(5): 100281, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095883

RESUMO

Anxiety and stress-related conditions represent a significant health burden in modern society. Unfortunately, most anxiolytic drugs are prone to side effects, limiting their long-term usage. Here, we employ a bioinformatics screen to identify drugs for repurposing as anxiolytics. Comparison of drug-induced gene-expression profiles with the hippocampal transcriptome of an importin α5 mutant mouse model with reduced anxiety identifies the hypocholesterolemic agent ß-sitosterol as a promising candidate. ß-sitosterol activity is validated by both intraperitoneal and oral application in mice, revealing it as the only clear anxiolytic from five closely related phytosterols. ß-sitosterol injection reduces the effects of restraint stress, contextual fear memory, and c-Fos activation in the prefrontal cortex and dentate gyrus. Moreover, synergistic anxiolysis is observed when combining sub-efficacious doses of ß-sitosterol with the SSRI fluoxetine. These preclinical findings support further development of ß-sitosterol, either as a standalone anxiolytic or in combination with low-dose SSRIs.


Assuntos
Ansiolíticos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Ansiedade/tratamento farmacológico , Sitosteroides/farmacologia , Animais , Medo/efeitos dos fármacos , Fluoxetina/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tranquilizantes/farmacologia
2.
Cell Rep ; 25(11): 3169-3179.e7, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30540948

RESUMO

Importins mediate transport from synapse to soma and from cytoplasm to nucleus, suggesting that perturbation of importin-dependent pathways should have significant neuronal consequences. A behavioral screen on five importin α knockout lines revealed that reduced expression of importin α5 (KPNA1) in hippocampal neurons specifically decreases anxiety in mice. Re-expression of importin α5 in ventral hippocampus of knockout animals increased anxiety behaviors to wild-type levels. Hippocampal neurons lacking importin α5 reveal changes in presynaptic plasticity and modified expression of MeCP2-regulated genes, including sphingosine kinase 1 (Sphk1). Knockout of importin α5, but not importin α3 or α4, reduces MeCP2 nuclear localization in hippocampal neurons. A Sphk1 blocker reverses anxiolysis in the importin α5 knockout mouse, while pharmacological activation of sphingosine signaling has robust anxiolytic effects in wild-type animals. Thus, importin α5 influences sphingosine-sensitive anxiety pathways by regulating MeCP2 nuclear import in hippocampal neurons.


Assuntos
Ansiedade/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , alfa Carioferinas/metabolismo , Animais , Ansiolíticos/farmacologia , Comportamento Animal , Carbolinas/farmacologia , Hipocampo/patologia , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Sinapses/metabolismo , Transcrição Gênica , alfa Carioferinas/deficiência
4.
J Neurosci Methods ; 270: 9-16, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27269190

RESUMO

BACKGROUND: Behavioral analyses in rodents have successfully delineated the function of many genes and signaling pathways in the brain. Behavioral testing uses highly defined experimental conditions to identify abnormalities in a given mouse strain or genotype. The open field (OF) is widely used to assess both locomotion and anxiety in rodents. In this test, the more a mouse explores and spend time in the center of the arena, the less anxious it is considered to be. However, the simplistic distinction between center and border substantially reduces the information content of the analysis and may fail to detect biologically meaningful differences. NEW METHOD: Here we describe COLORcation, a new application for improved analyses of mouse behavior in the OF. RESULTS: The application analyses animal exploration patterns in detailed spatial resolution (e.g. 10×10 bins) to provide a color-encoded heat map of mouse activity. In addition, COLORcation provides new parameters to track activity and locomotion of the test animals. We demonstrate the use of COLORcation in different experimental paradigms, including pharmacological and restraint-based induction of stress and anxiety. COMPARISON WITH EXISTING METHOD(S): COLORcation is compatible with multiple acquisition systems, giving users the option to make the most of their raw data organized text files containing time and coordinates of animal locations as input. CONCLUSION: These analyses validate the utility of the software and establish its reliability and potential as a new tool to analyze OF data.


Assuntos
Algoritmos , Ansiedade , Comportamento Exploratório , Análise de Variância , Animais , Ansiedade/fisiopatologia , Carbolinas , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Fenótipo , Restrição Física , Software , Estresse Psicológico
5.
Ann Clin Transl Neurol ; 1(2): 88-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25356388

RESUMO

OBJECTIVE: Ceramides are precursors of complex sphingolipids (SLs), which are important for normal functioning of both the developing and mature brain. Altered SL levels have been associated with many neurodegenerative disorders, including epilepsy, although few direct links have been identified between genes involved in SL metabolism and epilepsy. METHODS: We used quantitative real-time PCR, Western blotting, and enzymatic assays to determine the mRNA, protein, and activity levels of ceramide synthase 2 (CERS2) in fiibroblasts isolated from parental control subjects and from a patient diagnosed with progressive myoclonic epilepsy (PME). Mass spectrometry and fluorescence microscopy were used to examine the effects of reduced CERS2 activity on cellular lipid composition and plasma membrane functions. RESULTS: We identify a novel 27 kb heterozygous deletion including the CERS2 gene in a proband diagnosed with PME. Compared to parental controls, levels of CERS2 mRNA, protein, and activity were reduced by ˜50% in fibroblasts isolated from this proband, resulting in significantly reduced levels of ceramides and sphingomyelins containing the very long-chain fatty acids C24:0 and C26:0. The change in SL composition was also reflected in a reduction in cholera toxin B immunofluorescence, indicating that membrane composition and function are altered. INTERPRETATION: We propose that reduced levels of CERS2, and consequently diminished levels of ceramides and SLs containing very long-chain fatty acids, lead to development of PME.

6.
J Cogn Neurosci ; 25(9): 1418-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23574582

RESUMO

Cooperation involves intentional coordinated acts performed to achieve potentially positive outcomes. Here we present a novel explanatory model of cooperation, which focuses on the role of the oxytocinergic system in promoting interpersonal coordination and synchrony. Cooperation was assessed using a novel computerized drawing task that may be performed individually or cooperatively by two participants who coordinate their actions. Using a within-subject crossover design, 42 participants performed the task alone and with a partner following the administration of placebo and oxytocin 1 week apart. The data indicate that following placebo administration, participants performed better alone than in pairs. Yet, the administration of oxytocin improved paired performance up to the level of individual performance. This effect depended on the personality traits of cooperativeness or competitiveness. It is concluded that oxytocin may play a key role in enhancing social synchrony and coordination of behaviors required for cooperation.


Assuntos
Comportamento Cooperativo , Emoções/efeitos dos fármacos , Relações Interpessoais , Ocitocina/administração & dosagem , Desempenho Psicomotor/efeitos dos fármacos , Administração Intranasal , Adulto , Análise de Variância , Gráficos por Computador , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Tempo de Reação/efeitos dos fármacos , Adulto Jovem
7.
Alcohol ; 46(4): 349-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22444954

RESUMO

It is widely accepted that stress, anxiety, depression and alcohol abuse-related disorders are in large part controlled by corticotropin-releasing factor (CRF) receptors. However, evidence is accumulating that some of the actions on these receptors are mediated not by CRF, but by a family of related Urocortin (Ucn) peptides Ucn1, Ucn2 and Ucn3. The initial narrow focus on CRF as the potential main player acting on CRF receptors appears outdated. Instead it is suggested that CRF and the individual Ucns act in a complementary and brain region-specific fashion to regulate anxiety-related behaviors and alcohol consumption. This review, based on a symposium held in 2011 at the research meeting on "Alcoholism and Stress" in Volterra, Italy, highlights recent evidence for regulation of these behaviors by Ucns. In studies on stress and anxiety, the roles of Ucns, and in particular Ucn1, appear more visible in experiments analyzing adaptation to stressors rather than testing basal anxiety states. Based on these studies, we propose that the contribution of Ucn1 to regulating mood follows a U-like pattern with both high and low activity of Ucn1 contributing to high anxiety states. In studies on alcohol use disorders, the CRF system appears to regulate not only dependence-induced drinking, but also binge drinking and even basal consumption of alcohol. While dependence-induced and binge drinking rely on the actions of CRF on CRFR1 receptors, alcohol consumption in models of these behaviors is inhibited by actions of Ucns on CRFR2. In contrast, alcohol preference is positively influenced by actions of Ucn1, which is capable of acting on both CRFR1 and CRFR2. Because of complex distribution of Ucns in the nervous system, advances in this field will critically depend on development of new tools allowing site-specific analyses of the roles of Ucns and CRF.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Ansiedade/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Depressão/metabolismo , Etanol/farmacologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/metabolismo , Alcoolismo/psicologia , Animais , Humanos
8.
Proc Natl Acad Sci U S A ; 109(7): 2642-7, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308328

RESUMO

G protein-activated inwardly rectifying K+ channels (GIRK) generate slow inhibitory postsynaptic potentials in the brain via G(i/o) protein-coupled receptors. GIRK2, a GIRK subunit, is widely abundant in the brain and has been implicated in various functions and pathologies, such as learning and memory, reward, motor coordination, and Down syndrome. Down syndrome, the most prevalent cause of mental retardation, results from the presence of an extra maternal chromosome 21 (trisomy 21), which comprises the Kcnj6 gene (GIRK2). The present study examined the behaviors and cellular physiology properties in mice harboring a single trisomy of the Kcnj6 gene. Kcnj6 triploid mice exhibit deficits in hippocampal-dependent learning and memory, altered responses to rewards, hampered depotentiation, a form of excitatory synaptic plasticity, and have accentuated long-term synaptic depression. Collectively the findings suggest that triplication of Kcnj6 gene may play an active role in some of the abnormal neurological phenotypes found in Down syndrome.


Assuntos
Cognição , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Plasticidade Neuronal , Recompensa , Trissomia , Animais , Ritmo Circadiano , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Hipocampo/fisiologia , Camundongos
9.
Proc Natl Acad Sci U S A ; 107(44): 19020-5, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20937857

RESUMO

Responding to stressful events requires numerous adaptive actions involving integrated changes in the central nervous and neuroendocrine systems. Numerous studies have implicated dysregulation of stress-response mechanisms in the etiology of stress-induced psychopathophysiologies. The urocortin neuropeptides are members of the corticotropin-releasing factor family and are associated with the central stress response. In the current study, a triple-knockout (tKO) mouse model lacking all three urocortin genes was generated. Intriguingly, these urocortin tKO mice exhibit increased anxiety-like behaviors 24 h following stress exposure but not under unstressed conditions or immediately following exposure to acute stress. The inability of these mutants to recover properly from the exposure to an acute stress was associated with robust alterations in the expression profile of amygdalar genes and with dysregulated serotonergic function in stress-related neurocircuits. These findings position the urocortins as essential factors in the stress-recovery process and suggest the tKO mouse line as a useful stress-sensitive mouse model.


Assuntos
Transtornos de Ansiedade/genética , Comportamento Animal , Modelos Animais de Doenças , Estresse Psicológico/genética , Urocortinas , Animais , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...